e ' ARG
s

REF AD-A242 279 PAGE [mmires.

Public reporting burden for this) 0 time for existing data sources and maietaining the data
e T e e

Headquarters Service, Director .9 1204, Arington, VA 22202-4302, and 1o the Office of information and Reguiatory Aairs, Office of
Management and Budget, War _ -
1. AGENCY USE ONLY (Leave Blank) | 5 REPORT DATE 3. REPORT TYPE AND DATES COVERED
' Final: 29 Nov. 1990 to 01 Jun 1993
[4. TITLE AND SUBTITLE.] 5. FUNDING NUMBERS

R.R. Software, Inc., Janus/Ada 2.2.0 Unix, Northgate 386/25 Unix 3.2 (Host &
Target), 901129W1.11089.

6. AUTHOR(S) B‘m

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & 5
Ada Validation Facility, Language Control Facility ASD/SCEL &% c ORT NUMBER

Bidg. 676, Rm 135 ‘ AVF-VSR-437-0891
Wright-Patterson AFB, Dayton, OH 45433

)] ITORING AG (S) AND SS(ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

”&\/:J) S()@ELW e Ledo o, ((\W CL%R}VL[OUM [er . (J—LL
AD A wlvlqc +lcon P Phoebadi,

12a. DISTRIBUTION/AVAILABILITY STA 12b. DISTAIBUTION
Approved for public release; distribution unlimited.

13, ABSTRACT (Maximum 200 words)

R.R. Software, Inc., Janus/Ada 2.2.0 Unix, Wright-Patterson AFB, OH, Northgate 386/25 Unix 3.2 (Host & Target), ACVC
1.11. .

1-15065
| \\Il“l\l!\‘llll\.ﬂ\l‘\ |I$‘l|$\|||‘\\\||\

[14. SUBJECT TERMS 15. NUMBER OF PAGES -
Ada programming language, Ada Compiler Val. Summary Report, Ada Compller Val. e
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIMIL-STD-1815A, AJPO. 16. PRICE CODE

[17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OFREPORT - OF ABSTRACT :
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550) Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

AVF Control Number :AVF-VSR-427-0891
1 August 1991
90-08-02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901129w1.11089
R.R. Software, Inc.
Janus/Ada 2.2.0 Unix
Northgate 386/25 Unix 3.2 => Northgate 386,25 Unix 3.2

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Acesssion For

NTIS oRaAl

PrIC 1B 0
Yaartasnaed O

Justifieatton .

. By
7 _gégtripution/
Availabllity Codesn’
jAvall and/or
Dist Epscial

A\

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 29 November 1990,

Compiler Name and Version: Janus/Ada 2.2.0 Unix

Host Computer System: Northgate 386,25 (under SCO Unix 3.2)
Target ‘Computer System: Northgate 386,25 (under SCO Unix 3:2)
Customer Agreement Number: 90-08-02-RRS

See Section 3.1 for any additional information about the testing:
environment.

As a result of this validation effort, validation Certificate
901129W1.11089 is awarded to R.R. Software, Inc. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

&2 /QM/ —)]
Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Y‘J : . P '/'/"-";/:_7"“’ S sy
Ada Validation Organization
~.. Director, Computer & Software Engineering Division
- Institute for Defense Analyses

Alexandria VA 22311_

qg(ﬁfa Joint Program &hce

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

-

peclaration of Conformance

Compiler Implementor : R.R. Software, Inc.
Ada Validation Facility : Wright-Patterson AFB, Ohio 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.11

Base Configuration
Ada Compiler Name : Janus/Ada Version : 2. Unix

2.0 '
Host Architecture: Northgate 386/25 Host OS & Ver.:S5CO Unix 3.2
Target Architecture: Northgate 386/25 Target OS & Ver.:SCO Unix3.2

Implementor's Declaration

I, the undersigned, representing R.R. Software, Inc. have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that R.R. Software, Inc. is the owner of record of the Ada
compiler listed above, and as such, is responsible for maintaining
said compiler in conformance to ANSI/MIL-STD-1815A. All
certificates and registration for Ada language compiler listed ‘in
this declaration shall be made only in the owner's corporate name.

Tl 1590

Date 4

Vice President
R.R. Software, Inc.

Owner's Declaration

I, the undersigned, representing R.R. Software, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host/target performance are
in compliance with the ANSI/MIL-STD-181SA.

Date

Vice President,
R.R. Software, Inc.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCT;ON
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFMCES e o o o 92 e o e e e o s e s e o o o e 1-2
1.3 ACVC TEST CIASSES e o o o o e e e o o 2 e e o & o 1‘-2
1.4 DEFINITIW OF TERMS @ o6 & o e ¢ ¢ e & o o o o ¢ o 1-3

IMPLEMENTATION DEPENDENCIES

2

2 l WITHDRAWN TESTS e & e & e o ® * % 8 ¢ e e & o e 2-1
2.2 INAPPLICABLE TESTS + « o« o o ¢ o o o o o s o » o o 2=1
2 3 TEST MODIFICATIONS L T I e A R I 2-4

CHAPTER 3 PROCESSING INFORMATION
3.1 TESTIm Mm e & 9 e o s e & e e s 0+ s o 3"’1
3.2 oonooootooooooosoooou..o.B"l
N 3-3 TEST EXECUTION ¢ @ o o s e e e ¢ ¢ & 9 e s o o o 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada iiiplementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89]. '

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311 :

1-1

" INTRODUCTION
1.2 REFERENCES

Reference Manual for the Ada Programming Language, [Ada83]
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

{UG8B9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating ths result when they
are exscuted., Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are rot executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and executinn is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests- and
implementation-dependent characteristics. The modifications required for

" this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifi¢avions described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89J}.

In order to pass an ACVC an Ada implementation must proceSs.gaqh‘test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability -
(acve)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AvVO)

Compliance of
an Ada
Implementatlon

Computer
System

The software and any needed hardware that have tc b added
to a given host and target computer system to allow
transformation -of Ada programs into executable férm and
execution thereof.

The means for testing compliance of Ada implementations,
con51sting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system,

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation. .

The part of the certification body that prov;des technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written . or user—designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units. .

1-3

INTRODUCTION
Conformity

Customer

. Declaration of
Conformance

Host Computer
System

Inapplicable
test

ISO
LRM

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test

Fulfillment by a product, prqcess' or service. of all .
requirements specified. : '

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSIMIL~STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or -
contains erroneous or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AvO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D - C35702A B413088B C43004A
C45114a C45346a C45612B C45651A C46022a B49008A
A74006A C74308A B83022B B83022H B830258 B83025D
B83026B C83026A . C83041A B85001L C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CcCl223a BCl226A
CcCl2268 BC3009B BD1B02B BD1BO6A AD1B08A BD2A02A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A Cb4022D> CD4024B
Cb4024cC CD4024D Cp4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A Cp90058 CDA201E
CE21071 CE2117A CE2117B CE21198B CE2205B CE2405A
CE3lllC CE3116A CE3118A CE3411B CE3412B -CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113%..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..Z (15 tests)
C45641L..Y (14 tests)

C35705L..Y (14 tests)
C35707L...Y (14 tests)
C35802L..Z (15 tests)
C45321L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..2 (15 tests)
C46012L..2 (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER:

C35404B B36105C €45231B C45304B C45411B
C454128B C45502B C45503B €45504B C45504E
C45611B C45613B C45614B C45631B €45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, CB86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT INTEGER.

C35702A, C35713B, C45423B, B860(.T, and C86006H check for the predefined
type. SHORT FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 48 or
greater.

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE_QVERFLCWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

D55A03E..H (4 tests) use 31 or more levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

D64005F..G (2 tests) use 10 or more levels of recursive precedure calls
nesting which exceeds the capacity of the compiler.

B86001Y checks for a predefined fixed~point type other than DURATION.

2-2

id

IMPLEMENTATION DEPENDENCIES

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating~-point type.

CD2A84A, CD2AS4E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BDS8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

AD9004A uses pragma INTERFACE for overloaded subprograms; this
implementation rejects this use due to calling conventlons. (See
section 2.3.)

CDA201C instantiates Unchecked Conversion with an array type with a
non-static index constraint; this implementation does not support
Unchecked Conversion for types with non-static constraints.

The tests listed in the following table are not applicable because the
given file operations are supported for the given comblnatlon of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE, IN _FILE . DIRECT IO

. CE2102J CREATE' OUT FILE DIRECT I0

. CE2102N OPEN IN_FILE SEQUENTIAL IO
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT _FILE SEQUENTIAL” IO
CE2102R OPEN INOUT FILE DIRECT I0 —
CE2102s RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102V RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE ! DIRECT IO
CE2102w RESET OUT FILE DIRECT IO
CE3102E - CREATE IN _FILE TEXT_IO
CE3102F RESET Any Mode TEXT I0
CE3102G DELETE ————— TEXT 10
CE31021 CREATE OUT_FILE TEXT 10
CE3102J * OPEN IN_FILE TEXT IO
CE3102K OPEN OUT FILE TEXT 10

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115a

EE2201D uses instantiations of package SEQUENTIAL IO with unconstrained
array types; this implementation raises USE ERROR on the attempt to
create a file of such type.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity. ‘

EE2401D uses instantiations of package DIRECT IO with unconstrained
array types; this implementation raises USE_ERROR on the attempt to
create a file of such type.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT IO. This implementation does not
restrict file capacity. '

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or

SET_PAGE LENGTH specifies a value that is inappropriate Tor the external
file, This implementation does not have inappropriate values for either
line length or page length. .

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 80 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B29001A B37106A B51001A
B53003A B55A01A B63001A B63001B B73004B B83003B
B83004B B83004C B83004D B83004F B83030D B83EOLC
B83EO1D B83E(O1E B83EOLF B91001H BA1001A BA1001B
BA1001C BA1010A BA1010D BA1101A BA1101E BA3006A
BA3006B BA3007B BA3008A BA3008B BA3013A BC2001D
BC2001E BC3005B BD2B03A BD2D03A BD4003A

IMPLEMENTATION DEPENDENCIES

CB85006A..E (5 tests) were graded passed by Test Modification as directed by
the AvO. This implementation generates more object code for these tests
than it can contain in a single compilation unit. Each of these tests was
split into five equivalent subtests.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,

Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which Use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses requ1red support for

Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.117, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were commented out.

CD1009A CD1009I CD10OSM CD100Sv CDl009W CDICO3A
CDI1C04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C
CD2a81A CD3014C CD3014F CD3015C CD3015E..F CD301SH
CD3015K CD3022A CD4061A

BD4006A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that non-static values in component and
alignment clauses are rejected; but static alignment values of 8, 16, & 32
are assumed to be supported. This implementation supports only values 1ls
2; it rejects the clauses at lines 42, 48, 58, and 63, which are not marked
as errors.

AD9001B was graded passed by Processing Modification as directed by the
AVO. This test checks that, if pragma INTERFACE is supported, no bodies
are required for interfaced subprograms. This implementation requires that
some foreign bodies exist, even if the subprograms are not called. This
test was processed in an environment in which 1mplementor—supp11ed foreign
bodies were present. .

AD9004A was graded inapplicable by Evaluatlon Modification as dlrected by
the AVO. This test uses a single INTERFACE pragma for several overloaded
procedure and function subprograms; this implementation does not support
the pragma in such circumstances due to the calling conventions of the
interfaced language, and thus rejects the pragma.

CDA201C was graded 1napp11cable by Evaluation Modification as directed by
the AVO. This test instantiates Unchecked Conversion with an array type
with a non-static index constraint; this implementation does not support
Unchecked Conversion for unconstrained types and so rejects the
instantiation. The AVO ruled that various restrictions on

Unchecked Conversion may be accepted for validation under ACVC 1.11,
because AI-00590, which addresses Unchecked Conversion, did not show an ARG
consensus at the time of ACVC 1,11's release.

IMPLEMENTATION DEPENDENCIES

CE2108B, CE2108D, and CE3112B were graded passed by Test Modification as
directed by the AVO. These tests, respectively, check that temporary files
that were created by (earlier-processed) CE2108A, CE2108C, and CE3112A are
not accessible after the completion of those tests. However, these tests
also create temporary files. This implementation gives the same names to
the temporary files in both the earlier- and later-processed tests of each
pair; thus, CE2108B, CE2108D, and CE3112B report failed, as though they
have accessed the earlier-created files. The tests were modified to remove
the -code that created the (later) temporary file; these modified tests were
passed. Lines 45..64 were commented out in CE2108B and CE2108D; lines
40..48 were commented out in CE3112B.

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Isaac Pentinmaki

R.R. Software, Inc.
" P,0O. Box 1512

Madison, WI 53701

For a point of contact for sales information about this Ada implementation
system, see:)

Jim Stewart

R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 Summary Of Test Results

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was*
obtained that conform$ to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floatzng—poznt precision that exceeds the implementation’s. maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3773

b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 113
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 314
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

The diskettes containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
diskettes were installed onto a Northgate 386 with DOS 3.30 and then
archived for installation onto a Unisys 386 with SCO Unix. The files were
restored onto a Unisys 386 with SCO Unix and then transferred from the
Unisys 386 to the Northgate 386 running SCO Unix via the Unix Tar command.

The files were transferred from the Unisys 386 to the Norihgate 386 running
SCO Unix via the Unix Tar command.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

The options used for Janus/Ada are:

-Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have
to be responded to.

-W - Warnings off - warnings were suppressed mainly because of the
many confusing warnings the validation tests produce. Many
validation tests have intentional errors (such as an expression
which always raises an exception, use of null ranges, unreachable
code, etc.). The large volume of warnings produced made it
difficult to grade the B-Tests in particular, so they were
suppressed.

-BS ~ Brief Statistics. This was also used to cut the amount of output
produced by the compiler- during compile time.

All other options used their default values.
Thén, all of the non-B-Tests were linked with the options:
-Q - Quiet error messages - suppresses user prompting on errors.

Necessary for running L-Tests; otherwise every error would have
to be responded to. .

~T - Trim unused code - this option directs the linker to remove
unused subroutines from the result file. This can make as much
as a 30K space saving in the result file.

-B - Brief Statistics. This was also used to cut the amount of output
produced by the Linker.

All other options used their default values.
Test output, compiler and linker listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.)

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here t;s Ada string aggregates, where "V" represents the maximum input-line °
leng

Macro Paran;eter T Macro Value
$MAX IN LEN 200
$BIG_ID1 © (l..V=1 => ‘A", V=> '1')
$BIG_ID2 (1..V-1 => 'A7, V => 27)
$BI1G ID3° (1..V/2 => A7) & '3’ &
(1..V-1-V/2 => 'A’)
$BIG_ID4 (1..V/2 = 'A’") & '4' &
(1..v-1-V/2 => 'Aa’)
$BIG_INT LIT (1..v-3 => 0’) & "298"
$BIG REAL LIT (1..v-5 => 10') & "690.0"
$BIG_STRINGL t™eog (1..V/2 = ‘A7) & 1M
$BIG_STRING2 g (1..V-1-V/2 => ‘A7) & '17 & '
$BLANKS (1..v=20 => ' ')

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 "> '0’) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V=7 => '0’) & "F.E:"

A-1

MACRO PARAMETERS
$MAX STRING LITERAL '"’ & (1..V-2 => 'A’) & '"’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 2
$COUNT_LAST 32 767

$DEFAULT MEM SIZE 65536
$DEFAULT STOR UNIT 8
$DEFAULT SYS NAME UNIX

$DELTA DOC 2#1.04E-31

$ENTRY_ADDRESS (0, 16#40%)

$ENTRY ADDRESS1 (0, 16¥05#)

S$ENTRY ADDRESS2 - (0, 16401#)

$FIELD LAST 32_767

$FILE_TERMINATOR v

$FIXED NAME NO_SUCH_FIXED TYPE

SFLGAT NAME NO_SUCH FLOAT TYPE
$FORM_STRING L

$FORM_STRING2 CANNOT RESTRICT FILE CAPACITY

$GREATER_THAN DURATION
300_000.0

$GREATER_’I’HAN__DURATIONIBASE LAST
.0E6

$GREATER THAN FLOAT BASE LAST
1.0E+40

$GREATER THAN FLOAT SAFE LARGE
1.0E38

A~2

MACRO PA

$GREATER THAN SHORT FLOAT SAFE LARGE

'1.0E308 ~
$HIGH PRIORITY 0
$ILLEGAL EXTERNAL FILE NAME1

/NODIRECTORY,/FILENAME
$ILLEGAL EXTERNAL FILE NAME2

<BAD/"">
$INAPPROPRIA‘I'E__LINE_LEN$TH
$INAPPROPRIATE_PAGE_L!:N§TH
$INCLUDE_PRAGMAL PRAGMA INCLUDE ("A28006D1.ADAY)
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006E1.ADA")
$INTEGER FIRST -32768
$INTEGER LAST 32767

$INTEGER LAST PLUS 1 32768
$INTERFACE LANGUAGE C
$LESS_THAN DURATION -305_000.0

$LESS_THAN DURATION BASE FIRST

$LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY 0

$MACHINE CODE_STATEMENT
NULL;

$MACHINE CODE TYPE NO_SUCH TYPE

$MANTISSA DOC 31
$MAX DIGITS 15
$MAX INT 2147483647
$MAX INT PLUS 1 2147483648
$MIN INT - -214763648

MACRO PARAMETERS

SNAME
$NAME_LIST’

' $NAME_SPECIFICATIONL
$NAME SPECIFICATION2
$NAME SPECIFICATION3
$NEG_BASED_INT
SNEW_MEM SIZE
$NEW_STOR_UNIT
$NEW SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK _SIZE
$TASK_STORAGE SIZE
$TICK
$VARIABLE ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE ADDRESS2

$YOUR PRAGMA

NO_SUCH_INTEGER TYPE

UNIX

‘/usr/ike/x2120a

Just/ike/x2120b
/usr/ike/x3119a
164FFFF_FFFF#

65536

8

UNIX

ASCII.FF

RECORD NULL; END RECORD;
NO_SUCH_MACHINE CODE_TYPE
32

512

0.01
FCNDECL.Some_Var'’Address
FCNDECL.Some_Var2'Address
FCNDECL.Some_Var3'Address

ALL_CHECKS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation are provided by the
customer and can be found in Appendix F, section F.9, page F-14.

COMPILATION SYSTEM -OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation are provided by the customer
and can be found in Appendix F, section F.9, page F-14.

B-2

Jiink Manual

Jlink Manual

The Janus/Ada linker is used to combine a main program with system and
user defined compilation uniis to creata an executable program. Only object
code files - that s, JRL {Janus relocatable) and SRL. (specification relocatable)
files - created by the Janus’/Ada compiler, assembler, or other compatible

- products can be combined. For more information on SRL and JRL flles, see
Saction 10.1 of the comptier manual. The linker only needs to be supplied
with the naine of the object code file for the main program. It will search disks
(Including a swap disk, If desired) for the raquired units, It determines the
loading order of the units, and finally produces an executable program. The
linker is disk based, so any possible sized program may be linked with JLINK.
It may not be possible to produce an easler to use linkar.

Using the Linker

The usar only needs to type the command
JUINK [a:)prog_name

1o run the linker. The disk name d: specifies the disk on which to look for the
maln program. The prog_name Is the name of the object code file for the
main program, withous the SRL or .JRL file name exiension. The result file
Is placed Into the file with the same name as the main program object code,
and the file name extension appropriate for your system (,OOM or .EXE for
- MS.DOS). The rasult file Is placed on the disk where the main program is
found.

Examples:

JLINK TESTPROG
« LInks Tastptoy to mako an exocutable piogram.
JLINK B.QSORT
-- Links Qson {(wiuch will e founa on the 8: disk)
«« Into an eavcutabie program.

This is all of the information needed to use the linker. More detalls about the
operation of the linker will be found on succeeding pages.

K-}

Revision 4,6

Jlink Marual

Linker Operation

. The linker operates automatically. However, to better understand the opera-
tion of the linker options (below), a brief description of i linker operation
s given here.

The following disk (drive) name detinitions are used throughout the rest of
the linker manual.

The default disk is the one currently logged in on yoursystem. This Is thedisk
name which appears in the sysiem prompt.

The source disk Is the disk which is specméd on the command line as the_
source of the main program. Unless a different disk is specified on the
command line, it will be the defauit disk.

The destination disk 1s the disk o which the output executable file will be
written, Unless a different disk is specified on the command line, it will be the
source disk. o

The swap disk is a disk specified on the command line which allows a whole
set of disks to be searched by swapping each disk Into a disk drive. Any disk
other than the destination disk may be usad for this purpose. There is no
swap disk unless the swap option is used.

In many cases, the default, soun:;, and destination disks refer to the same
hard disk, and the swap disk Is not needed.

There are two kinds of segments (memory areas) referred fo in this manual.
Physical segments are the segments imposed by the underlying hardware. A
logical sagment Is the segmenting imposed by the Janus/Ada compllar and
assembler.- Each unit ts divided Into three logical segments - code, data, and
constant. The linker's Job is 10 combine many logical segments into the proper
number of physicai seyments. Whenever a segment Is referred o in the rest
of this manual, it means a logical segment, unless otharwise noted.

The mapping between physical segments and logical segments s specified
by the program’s memory model. Many machines with modem architectures
allow the mapping of the many logical segments into one large physical
segment. These machines require only one memory model. Other machines
(like the 8086 family) have an architecture which makes the mapping more
difficult. The different models generate different amounts of code, run at
different speeds, and have ditlerent linits on the size of programs.

LINK-2
Copyright 1969 R ¥ Scfwaiz, Inc

Jlink Manual

On the 8086 (and chips in the same family), the default memory model will
generally cause the linker o produce a COM file. This memory model, called
‘Model 0, has a maximum of 64K of code In & program, To allow the use of
more code in a program, one may use the /01 (Model 1) option in both the
compiler and in the linker (see below). This option causes the linker to
produce an EXE file; the code size is restricted then only by your operating
systam and by the amount of memozy available on your machine, Note that
some versions of the Janus/Ada compller are sold without the libraries to
allow the use of Mode! 1.

All compilation units in a given program must be compiled with the same
memory model, and the program must be linked with that same modael; the
compiler and the linker enforce this nule.

The linker operates in three phases. Tha first phase loads the headars of all
of the units, and thereby determines which units are needed. This phase also
records the disks where the units are found {for later use) and creates a table
of entry points (places where other uniis may access this one). Tha disks are
searched In the following order: fiist the source disk, then the default disk,
and then the swap disk umtil all of the units are found (or the linker is aboried
by the user).

The second phase does not use the disks at all. The tabla of units to load
craated by the first phase Is used to deteimine the loading order of the units.
This step Is necessary due to the elaboration rules of Ada (See Section 10.5
of the compiler manual), since Janus/Ada loads units in the order in which
they are to be elaboratad. The load address of each unit is determinad in this
step. The second phasz.tries to minimize the amount of disk swapping that
will be necessary in ihe third phase

The third phase reads in each unit, {ixes up all external references and
relocatable items, and writes out the resulting executable file. (External
referances are usages of items declared outside of the unit being linked. The
linkage information held In an external reference is replacad by actual
machine addresses wwhen 1t 18 "fixed up')

I the swap option is niot usad. as Is usually the casz when compliing from a
hard disk, the fixing up is done without any user intervention, A prompt is
issued each time the swap disk needs to be changed, with a list of the units
which shouid be on the disk Inseried. The linker tries to be friendly about
errors in this process - It the des:gnatad file Is not found, It just asks again for
the disk to bw Inserted.

JUKS

Revision 4.6

Jink Manual

Linker Command Line and Options

The linker command line looks like:
JUINK [D:]prog_name{/options}

The prog_name Is the name of the object code file (SRL or JRL file) of the
main program, without the *.SRL" or ".JRL" extension. {We will refer to thls
simply as an SRL file from here on In this manual; however, evarything said
about the inain program’s SRL file shouki be understood to apply if the main
program has generated a JKL [as it would if a separate specification was
provided}). The oplional disk name D aliows the source disk to be specified
assome other disk than the default disk. Tha main program's SRL flle should
be found on the source disk. The main program must be a Janus/Ada
parmmaterless procedure,

Note;
No file name extension is allowed.

In general, the name ol the SRL flle for the main program correspongds to the
first eight letters of the unit name for the main program. If that name had
already been used by some other unit, however, then the SRL flle name will
vary. This can only happen If same other unit in the same program Iibrary
has the same first eight letters as the main program. For more informatlon on
Janus/Ada flle naming conventions, sae Section 10.1 of the Janus/Ada
compiler manual. :

Many users will never need any options; most that do will need only the /01
optlon to allow for the larger memorv model, the /2 option to use hardware
" floatingpoint, the/T option to reduce the size of the executable, or occasional-
lythe/E,/L.,/Q, ot /S options. However, all the feliowing options are provided
to increase the flexibility of the linker

Chhhh Set the starting nddress of the code within the physical code
segment 10 hhhh (hexadacimal). The physical code segment will
still be allocated from 2ero by the operating system. The physical
code segient can be loaded anywhere in special applications, so
this option wil! bz used veiy rarely. The resulling program will not
work under MS-DCS. -

Dhhhh Set the starting addiess of the data within the physical data
seginent (o hhhh (hexadecimal). The physical data sagment will
stilt be aliocated irom zero. The physical data segment allocation

. LINK.4
Copyright 1983, K R Softwa. tnc

Fn

Jlink Manual

address can t changed by modifylng JLIB8S. This option will
only be used for very special applications. The resulting program
will not work under MS-DOS unless JLI886 is modifiad.

Create an EXE file. This is assumed if the /O1 option is given. This
allows aliow & somewhat larger iotal program size if memory
model Qs used, by using different physical segments for the loglcal
constant segmeni and the logical code segment,

Usethe class n {where n Is0 or2) floating point library. If a floating
point library of the speclfied class already exists in the link, then It
is used. Othewise, the default floating point library is used. If this
option s not used, the class 2 library Is used if any unit was
compiled with the /F (hardware floating point) compiler option,
‘orathenwise contams hardware floating point operations; and the
class O librawy Is used othaiwise. The classes are:

0 Universal software floating point (FLOATOPS),
1 Not supported in our Ada compllers.

2 Univenal haidware floating point (FLOAT87 on the 8086
series). Wurning' In some versions of Janus/Ada, the
hardwate of he 8087 chip can cause some surprising resulis
when using this opiion. Chack Appendix Section L2 in the
compiier manual to see If your version is affected.

3 Notsupported in our Ada compilers.

This option ailows the use of different forms of floating point sup-
poit without recompiting the wogram, It aiso eliminates the pos-
sibility of moie than ane floating point Itbrary being used In a
single program (which does not work!). An error is genarated if you
try 1o use software support with units compiled with the /F option.

Turns on the listing option. The current unit belng worked on Is
printed, and a table of acdiesses for each unit 8 listed on the con-
sole. Tliese can be used for debugging. The format of the table is:

Pack-name Cude-hbhn Datashhhh Const-hhhh
where hhhh is the hex value of the first address assigned to that
unit’s cexle duta, r consiand segment. The order glven for the
units Iy the sevena and third passes of the linker specifies the

LINK.S

Revislon 4.6

Jlink Manual

" Mhhhh

elaboration onder of the varlous units {see Section 10.5 of the
compiler manual).

Sei the minimun size of the physical ‘code segment plus the
physlcal constant segmenf, The size hhhh is In paragraphs (16
byte Inciements). This forces the start of the physical data segment
to start khbhO (hex) bytes after the start of the physical coda
segnent. If this opiion Is used, and the physical code segment plus
the physicai censtant segment ske exceeds the minimum size, a
warning soessage is produced. This option is primarlly useful for
programs which use the Chaln procedure and wish to preserve
the physical data seament. The option assentially causes the
physical data segment to be in tha same absolute locations in each
program which uses it. .

This opiion may only be used with the small memory mode!
(model 0).

Use memory model n (when nis a number between 0 and 7). This
option s used to specify an altemative memory model to the small
model used by default. Al ‘units linked must bs complled or
assembled with the specified memory model. The memory models
are;

0 Small code. (64K code, 64K data, 64K constants). The
default model, and the only one supporiad in the C-Pak.
This madel generales a COM file, unless the /E option is
specilied. A COM file 18 linitad to 64K total for both code
and consiants. If more Is nacessary, use the /E option, or
model 1.

1 Largecode. (Unlimiled code, 64K data, 64K constants). The
code ske is linited Ly available memory. This model is
appropriate for lamer programs. This model generates a
.EXE file. Progiams that use this model will typleally be
about ten {0 weniy percent bigger and slower than the
equivalent program using mode! 0.

2:7 Unused.

Produce quiet error messages. In the normal mode of operatien,
the link waits after every ¢rror so that the user can see the emror
without it serelling off the screen. This option suppresses those
prompts.

‘LINK 6

Copyright 1989, LR Softvare, hix.

Uhhhh

Examples:

Jlink Manual

Re-direct the iinker output to the specified path. the defaulf is the
same paith as flename.

Use the specified path as the swap disk. The linker will abort if all
of the libraries needed in the current program are net found on
the source or defaultdisk whan no swap disk is specified. If a swap
disk Is specifled, a prompt will be issued for the user to change the
swap disk. The linking may be aborted at any time during a swap,
The swap disk may not be the same as the destination disk. Any
other path inay be used This option is most useful on systems
with limited disk capacity (L., systems with less than 720K per
disk).

Trim out unieachabie subprograms from units that were compiled
with the comnpller's /T option (see Appendix Section H.1 of the
compiler manual); this can significanily reduce the size of the
executable file, at the cost of slowing dewn the linking process,
Using this opiion invokes an extra pass, batween the first and
second linker passes, to do the requested trimming. We strongly
recominend using this option on (at least) flnal versions of

programs.

Set the stariing address of the consiants within the physical
constant segment to hhhh hexadacimal. The physical consiant
seginent will still be allocated from zero. Tha physical consiant
seyment aliocation address can be changed by modifying JLIBSS6.
This option will only be used for very special applications. The
resulting program will not work under MS-DOS unlass JLIB8G Is
modified,

Produce an eXtra detatled link map for the program. This will be
left in a flie called < prog_names> .LNK. where <prog_name> Is
the nume of the mamn program, This file Is mainly for the use of
debuygers and ofher future tools.

JUINK B.TESTPROG/RD
o Link Testprog tiom the 8: dish. and put the
« {8sult on the D. disk.
JLINK C.CHAIN/SB/L
- Link Chain from the C. ulsk, soarch the B, disk
« tor needed units altuywing the user 10 SWap disks

LINK-?
Revision 4.6

Jlink Manual

-« when nuaded. Put the 1esult onto the C. disk,
-- and display ‘a kisting of the link addresses.
JLINK B:SAVEDAIA/MB00O0/F2
- Link SaveDaia from the B: disk, forcing the code size
-- 10 be at least 8007 Hex bytes. Uso floating point
-- modai #2.

Error Messages

All errors except wamings are fatal. The linker will prompt the user after an
arror so that the user is sure io notice the error., (These prompts may be tumad
off by the /Q opticn). Fatal errors abort the linker.

Some error messages mention a JRL file axplicitly. The ﬁmnlng may actually
be for a SRL file; the error messages only mention JRL for brevity.

Warnings
Some units use Floating Point Hardware, yet & Software unit was specified

The softwaie and hardware floating point should not be mixed. If
you have a fluating point co-processor on your target machine, we
recornmend using only hardware floating point; otherwise, use
only software flcating point.

The Code segment is largar than the minimum
(See /M option, above, for explanation)

The unit xxxx is obsolete because yyyy was ucornpned

it will be ignored
The unit xxxx iias an optional body, and that body was made ob-
solete by recompiitng yyvy (one of the uniis withed by xox).
Ada’s rules state that xxx must be Ignored unioss it Is recompiled.
The linker is just jetting you know that this happened; if you really
want to have the body of xxx linked in, you should recomplle it.
This same message can appear as an enor If xxxx is anything other

- than an optlonal body.

Command Line Errors
These are all causid by an iconect command line.

Command l.ine Option Unknown

LINK.§
Copyright 198y, RR Sotware. li.

Jlink Manual

An option following a slash does not correspond to any legal linker
option.

‘Disk Namu too long
The disk name In the command line may havg at most one letter.

Extens!on 100 long

At most three letters are allowed In a file name exienslon, (This mes-
sage cotnes {rom our standard command line parser. In fact, the
linker does not allow any file name extenslons)

.Extensions not Allowed I Linker
The unit name given 1o fink must not have a file name extension.

Flle Name too longy

The file nanie In the commiand line should be at most eight letters
long. This Is no longer checlied In most versions of the linker, so
this error should not occur.

Garbage o1 end of command line

The linker cannot understand some or ali of the command line,
Make sure that the syntex of the command line maiches that listed
in the section caiied "Linker Command Line and Options,” above.

Ilege! Disk Name for Option
A disk name for the /R or /S option was niot in the range A..W.

llegal Vaiua for Option

The value given with an option that needs one (/F /O) is illegal or
out of range.

Missing Disk Name for Gption .
An option raquiring a disk nanie {/R, /S) does not have one.

Missing Vaiue for Option
A value was expected tollowing an option (probably /F or /O).

Revision 4.6

Jlink Manual

. Muitiple Colons In Fiia Natne)
The file name listed In the command line may not have multiple
colons.

Multiple Periods In | lie Name

The file name listed In the command line may not have multiple
perlods. (This message comes {rom our standard command line .
parser. In fact, the linker does not allow file name extensions, so no -
periods are allowed)

No File Naine Preseri
No fil2 name was found on the command line.

- No Hax Number given for option

An option requiring a hexadevimal number (/C, /D, or /M) does not
have ong. :

No option after stash on command ne

There was a slash on the command line without anything following
it,

Paths not allowed In Linker
The flle name In the conunand line may not include a path.

The Swap disk cannot bs the same as the destination disk

Most operating systems do not allow the changing of disks which
are being writien 10; therefore the destination disk cannot be used
as the swap disk.

Too many digits in hex number

A hex numbwer specitied in the /C, /D, or /M options may only have
4 digtts.

Generic Unit Errors

Hliegal generic instantiation in xxxx .
The instantiution on line nuinber yyyy is indirectly circular.
A unit inay not Instentiate a unit whicn instantiates the original unit,

A gencric unit cannot Instantiaie a genaric unii which, divectly or In-
directly, causes an instantiation of the first unit. This emor can
sometimes be determined at complle time. In the casa of sepamately -
compiied generics, however, 1t may not be detectad until link time.

LINK-10
Copyright 1989, R Softwste, lic.

Jliink Manual

In this case, the enor message gives the name of the object cade
flle that was ptoduced when one of the offending instantiations
was complied, as well as the line number where that instantiation
occurred.

Iegal generic instantiation In xxxx
Parameter number yyyy in the instantiation on line number zz22
must not be an unconstrained type.

Certain restrictions apply to gengric actual types if the correspond-
ing generic formal type is used in certain ways in the body of the
generic unit. In particular, the generic actual type may not be elther
an unconstrained array subtype (sea Section 3.6 of the complier
manual) o1 a discriminated 1ecord subtype with no defaults for the
discriminants (see Section 3.7.2 of the compiler manual) if the cor-
responding generie fomal type is used in any of the following
ways. as the type of a variable declaration; as the type of a com-’
ponent declaration; or as the full declaraiion of a private type. This
restriction prevenis using geneiics to create objects that need to be
constrained but are not. This error can sometimes be determined at
compile thma, In the case of separatcly complied generice, howewver,
it may not be detected until link time. In this case, the emor mes-
sage gives the following information: the name of the object code
file that was preduced when the offending instantiation was com-
piled; the parameter number In the instantiation; and the line num-
ber where the instantiztion occurred.

Link iirrors

Bad .JRL flie - lilegal Data Element

The JRI. file or SRL tile kay a Lad data element. Recompile the indl-
_ cated unit and {if ii Is a specification) any units that depend on it.

Cannot be a Main Frogram
A Main Program must be « Pararnetoness Procedure.

The unit that ends 1p buing the main program must be a non.
generle proceduse, with 1o parametets,

Cannot use a .COM fiie for this program,
The small modil progran: has 1o much code and constants to fit in
a OOM file. (M3-T5035 puts a 64K limit on the size of COM files;
larger ones will not lsad nropeily.) You should either use the
linker's /E andjor /T ophons if you are not already doing so;
decrease the slze ot the units {perhaps by using the OPTIMIZE

LINK 11
Revision 4.6

Jlink Manuat

pmgma'); or recompile and relink the entire program with the large
memory mode! {model 1).

Code Segment Ovafiow - Cannot be larger than 64K
' You frled to link a sinall memory mode! program {model 0) whlch
sas'more than 64K of code You should either use tha linker's /T
ophon If you are not already dolng so; decreasa the size of the
units (perhaps by using the OPTIMIZE pragma); or recompile and
relink the entite program with the large memory model (model 1).

Compilation Units yet to be icaded -
* [Unit List]
are not {ound on eithoer the source or default disks
The flle(s} specified were not found on any of the disks, and are re-
quited by this program.

Constant Segmant Ovestlow - Cannot be larger than 64K

You tried 10 link a program with moia than 64K of constants.
Janus/Ada only aliows 64K of constants, due to the architecture of
the 8086.

Data Segmant Ovartiow - Cannot be larger than 64K

You tried {0 link a program with morg than 64K of statically allo-
cated data. The maximum physical segment size is 64K, and the
present version of Janus/Ada does not allow more than one normal
physical data segment. If you get this error, you must move enough
data out of the data segment 1o allow room both for the statically al-
located data and for dynamic data, including local varlables and
objects allocated on the heap. If the package BIGARRAY was sup-
plied with your compller, you can use it o move some of your data
into a special physical data segment.

Dependency Table Oveifiow

The linker's inturnal fable that says which units are interdependent
has overflowed. If you get this error message, your program is too
blg for Janus’Ada to Landle In one piece. Consider using the
Janus‘Aida chaining hibrary {CHAINLIB) o break up your program
into separate passes (CHAINLIB Is not provided with all Janus/Ada
-packages).

Disk Full
The output disk was fuil.

LINK 12
Copyright 1989, R it, Sofuvare, fxc

Jlink Manual

Entry Point Table Ovarflow
The entry point table has overdflowed. If you get this arror message,
your program is tow big for Janus/Ada to handle in one piece. Con-
skier using the Janus/Ada chaining library (CHAINLIB) to break
up your program Inio separate passas (CHAINLIB is not provided
with all Janus/Ada packages).

Error Number Incorrect

The linker tried to use an unused eror message, Please contact us
with deiails.

JAL flle not the same o the second rading

This ervor can only occur if.you used two different swap disks on
_the first and second reading of-a given unit's JRL file or SRL file.

Minimum Code Option can only be used with memory model 0
The /M option is allowed only for small mods! programs.

Missing Externai litem

An externa! item was not found in tha entry point table. The unit
name in which the itemn was expected to be found is listed with the
error message. The most likely reason for this arror is an incorrect
compilation order. Another possible reason Is that the JRL flle or
SRL file for the ghsen unit has been damaged. Try recomplling the
offending unil. If that fails, then iry 1ecompiling the entire program
{using CORUER, If you have it, to insur that the order is correct).
1f bothi of these fail, please contact RR Software.

Not & .JRL tiie from tho cunent version of Junus/Ada

The JRL or ERL verslon number (in the file) is not current, Recom-
plle the Indicated untt and (it it Is a speeification) any units that
depend on {i.

Not enough RAM

This message Indicates that there Is not enough avallable random
access memorny in your mischine 10 run the linker. Janus/Ada re-
quires bAUK of randomns access memory on your maching. If you
think you have 2nough memory, but you get this message, check
whether you are ranning any imemoiy resident programs; such
programs decieuse the amount of available memory on your
machine. If you have enough memory and no memory resident
programs, please contact K.R. Software. This message is usually
printed with the name of one of JLINK's units; that information will

LINK-13
Revision 4.6

Jiink Manual

help our suppori staff let you know how*mu;:h more memory you
will need t: tun the linker.

Obsolalo Units found

Some of the units that were to be linked are obsoleta: that is, some
of the units on which they depend have been recompiled more
recenty than they have. The oifending units were lisied before this

N message came out. The appropriate units and any units that
depend-on them should be recompiled. If you have CORDER, the
Janus/Ada comipilation order tool, you may wish 1o use It o recom.
pile all absoulete units.

The foliowing compliation units could not be loaded due to

& mutual depondency (probably caused by Elaborate pragmas)

[Unit List]

The units listed below (if any) may also be mutually depsndent,

[Unit List]

The mutual depentuncy must ba removed,
The fisst list of units shows a cycla of units that cannot ba leaded.
The lnst uait ins the list is 1equired {o be elaborated before the first
unit in the list, and each other unit In the list is required to be
elaborated before the next unit in the list. Hance, there is no legal
elaboration order. The 1eason that cach unit in the list is required
to be eluborated belore another listed unit is one of ths following
three reasons: the unit 1o be loaded first is a specification and other
unit Is its body:; the unit 1o be loaded first Is a specification men-
tionad in a with clause of the other unit, or the unit 1o be loaded
first is a body mentioned In an ELABORATE pragma of the other
unit. The sevond list of units shows other units that were not
loadable; these may depana on the units In the cycle, or there may
be another cyrle.
In theory, this etror can only occur if an ELABORATE pragma is
present, since otherwise the compllation order gives a proper -
elaboration order. If you yet this enor and you have no
ELABORATE pragmas In yeur pregiam, then one of your SRL or
JRL flles is probatly damaged. Recomplie your entire program ina

. proper order

The unit xxxx It obsuiute becauss yyyy wes recompiled

Unit xotxx dejxends on umt yyyy, but yyyy was compiled more
recently than xxsx Kecompile ouex and any units that depend on
it. This samie riiessage can appear as a waming if xxx is an option-
al body.

LINK-14
Copwright 1989, R Suttwma, lue

Jlink Manual

Too many Compiiation Units in one Program

One program may have only 300 compilation units. If you exceed
this limit, your mogram is 1oo big for Janus/Ada to handle in one

" . plece, Consider using the Janus/Ada chaining library (CHAINLIB)
to break up vour progiam into separate passes (CHAINLIBisnot
provided wlth all Janus/Ada packages).

Too many deistions for /T option
Your program iequires the /T option to remove too many proce-
dures. Reduce your use of unneaded procedures, compile soma of
your units without the /T compiler optlon, or do not usa the /T op-
tion.

Too many externals for /T option
Your program has so many externzl references that ths Janus/Ada
- linker cannot keep track of all of them for the purposes of the frim-
ming done by the /T option. Reduce the number of such references
(possibly by supjrassing checks), complie some of your units
without the /T cumpiller option, or do not use the /T option.

Too many genaric chack recoras
Your program hias more direct and indlrect generic instantiations
than Janus/Ada can handle; too much memory would be needed
10 chack that the lnstantiations arg all legal. Reduce your usage of
generics.

Too many relocations for /T vption
The program unit belng loaded has so many relocations that the
Janus/Acda linker cannot keep track of all of them for the purposes
of the tinuning done by the /1" option. Reduce the number of
relocaticiis by compiling the offending unit with the optimizer cn,
compiling the unit without the /T compller option, or do not use the
/T option.

To0 much Code for onv .JRL Flte

The maxitnum amount ¢l code (including constants) in one JRL
file or SRL file 1 32000 tytes The JRL file or SRL file is probably
damaged. Recomplle the indicated unit and (If it is a specification)
any units that depund on it.

LINK-15
Revision 4.6

Jlink Manual

Unit 000 has Memory Modet different than specified
All unils musi be compiled with the same memory model as that
specified, If this message appears with unit JLIB86, then you are
_not using the Jais/Ada libiaries for the correct modal; that Is, your
MS-DOS scaich path is not comrect.

LINK 16
Copyright 1989, KK Sottware, inc

APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies.correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

060000t

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -21474838648 .. 2147483647;

type FLOAT is digits 6 range -((2.0 ** 128) - (2.0 ** 104)) ..
((2.0 ** 128) = (2.0 ** 104);

type LONG FLOAT is digits 15 range —((2.0 ** 1024) - (2.0 ** 971)) ..
((2.0 ** 1024) ~ (2,0 ** 971));

type DURATION is delta 0.00025 range —((2.0 ** 31) - 1)/4096.0 ..
“ ((2.0 ** 31) - 1)/4096.0;

end STANDARD;

Appendix F: Implementation Dependencies
b 4 Implementatjon Dependencies

This appendix specifies certain system—dependent characteristics
of the Janus/Ada, version 2.2.0 386 SCO Unix compiler.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, Janus/Ada also provides
several others. Some of these pragmas have a fextual range. Such
pragmas set some value of importance to the compiler, -usually a
flag that may be On or Off. The value to be used by the compiler
at a given point in a program depends on the parameter of the
most recent relevant pragma in the text of the program. For
flags, if the parameter is the identifier On, then the flag is
on; if the parameter.is the identifier Off, then the flag is off;
if no such pragma has occurred, then a default value is used.

The range of a pragma - even a pragma that usually has a textual
range - may vary if the pragma is not inside a compilation unit.
This matters only if 'you put multiple compilation units in a
file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects
only that unit.

2) If a pragma is outside a compilatlon unit, it affects
.all following compilation units in the compilation,

Certain required Ada pragmas, such as INLINE, would follow
different rules; however, as it turns out, Janus/Ada ignores all
pragmas that would follow different rules.

The following system-dependent pragmas are defined by Janus/Ada.
Unless otherwise stated, they may occur anywhere that a pragma
may occur.

ALL_CHECKS Takes one of ‘two identifiers On or Off as its
argument, and has a textual range. If the argument
is Off, then this pragma causes suppression of
arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK -
see below), storage error checking, and
elaboration checking. If the argument is On, then
these checks are all performed as usual. Note that
pragma ALL_CHECXS does not affect the status of :
the DEBUG pragnma: for the fastest run time code
(and the worst run time checking), both ALL_CHECKS
and DEBUG shoulZ be turned Off and the pragma
OPTIMIZE (Time’ :should be used. Note also that
ALL_CHECKS does zct affect the status of the

Copyright 1990, R.R. Software, Inc. ' Revision 4.6

ARITHCHECK

CLEANUP

Appéndix F: Implementation Dependencies

ENUMTAB pragma. Combining check suppression using
the pragma ALL_CHECKS and using the pragma
SUPPRESS may cause unexpected results; it should |,
not be done. However, ALL CHECKS may be combined
with the Janus/Ada pragmas ARITHCHECK and
RANGECHECK; whichever relevant pragma has occurred
most recently will determine whether a given check-
is performed. ALL_CHECKS is on by default. Turning
any checks off may cause unpredictable results if
execution would have caused the corresponding
assumption to be violated. Checks should be off
only in fully debugged and tested programs. After
checks are turned off, full testing should again
be done, since any program that handles an
exception may ekpect results that will not occur
if no checking is done.

Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where -
ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for
situations where it is permitted to raise
NUMERIC_ERROR; these checks include overflow
checking and checking for division by zero.
Combining check suppression using the pragma
ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ARITHCHECK may be combined with the
Janus/Ada pragma ALL_CHECKS; whichever pragma has
occurred most recently will be effective.
ARITHCHECK is on by default. Turning any checks
off may cause unpredictable results if. execution
would have caused the corresponding assumptlon to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done. .

Takes an integer literal /n the range 0..3 as its
argument, and has a textual range. Using this
pragma allows the Janus/Ada run-time system to be
less than meticulous about recovering temporary
memory space it uses. This pragma can allow for
smaller and faster code, but can be dangerous:;
certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more

. danger is permitted. A value of 3 ~-the default

F-2
Copyright 1990, R.R. Software, Inc. Revision 4.6

DEBUG

ENUMTAB

Mmuﬂbth‘lqﬂému&ﬁmﬁ#mﬁ«tuw

value-causes the run-time system to be its usual
immaculate self. A value of 0 causes no
reclamation of temporary -space. Values of 1 and 2
allow compromlslng between "cleanliness" and
speed. U51ng values other than 3 adds some risk
of your program running out of memory, especially
in loops which contain certain constructs.

Takes one of the two identifiers On or Off as its

‘argument, and has a textual range. This pragma

controls the -generation of line number code and
procedure name code. When DEBUG is on, such code
is genérated. When DEBUG is off, no line number
code or procedure names are generated. This
information is used by the walkback which is
generated after a run-time error (e.g., an
unhandled exception). The walkback is still
generated when DEBUG is off, but the line numbers
will be incorrect, and no subprogram names will be
printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of Janus/Ada's
power in describing run time errors.

Notes:

DEBUG should only be turned off when the program
has no errors. The information provided on an
error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or
package specification, then it must be on at .the
end of the specification. Conversely, if DEBUG is
off at the beginning of such a specification, it
must be off at the end. If you want DEBUG to be
off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the
compilation or you can use the appropriate
compiler option.

Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of enumeration tables.
Enumeration tabkles are used for the attributes’
IMAGE, VALUE, and WIDTH, and hence to input and
output enumerzzion values. The tables are |,
generated when ZINUMTAB is on. The state of the
ENUMTAB flag Is significant only at enumeration
type definiticnz. If this pragma is used to

k1
-

Copyright 1990, R.R. Software, Inc. ’ Revision 4.6

PAGE_LENGTH

Appendix. F: Implementation Dependencies

prevent generation o< a type's enumeration tables,
then using the thrés mentioned attributes causes

' an erroneous program, with unpredictable results;

furthermore, the type should not be used as a
generic actual discrete type, and in particular
TEXT_IO.ENUMERATION_IO should not be instantiated
for the type. If the enumeration type is not
needed for any of these purposes, the tables,
which use a lot of space, are unnecessary. ENUMTAB
is on by default.

This pragma takes a single integer literal as its
argument. It says that a page break should be
added to the listing after each occurrence of the
given number of lines. The default page length is
32000, so that no page breaks are generated for
most programs. Each page starts with a header that
looks like the following:

Janus/Ada Version 2.2.0 compiling file on date at ;1mg‘

RANGECHECK

OPTIMIZER

Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for
situations where it is expected to raise
CONSTRAINT_ERROR; these checks include null
pointer checking, discriminant checking, index
checking, array length checking, and range
checking. Combining check suppression using the

. pragma RANGECHECK and using the pragma SUPPRESS

may cause unexpected results; it should not be
done. However, RANGECHECK may be combined with the
Janus/Ada pragma ALL_CHECKS:; whichever pragma has
occurred most recently will be effective.
RANGECHECK is on by default. Turning any checks
off may cause unpredictable results if execution
would have caused the corresponding assumptzon to
be violated. Checks should be off anly in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

Takes one of the identifiers On or 0Off, or an
integer literal, as an argument. This pragma
turns optlmlzatlon on or off, either totally or
partially. It has a textual range, except that if

Fed

Copyright 1990, R.R. Software, Inc. . Revision 4.6

Appendix F: Implementation Dependencies

the global optimizer is turned on for any part of
a compilation unit, then it is on for the entire
compilation unit. If the identifier is On or Off,
then Janus/Ada's optimizers are turned totally on
or totally off, as appropriate. An integer
literal as an arguement causes optimization to be
turned partially on or off. .

The following integer literals are meaningful as
an argument to this pragma:

1) Turns check elimination optimizations on.

2) Turns the basic block optimizer on.

3) Turns the global optimizer on. If this is on
anywhere in a compilation unit, it will be on
everywhere in that unit.

4) Turns peephole optimizations on.

5) Puts the optimizer in 'Space' optimization
mode (the default).

6) Puts the optimizer in 'Careful' optimization
mode. The can take much longer than 'Quick!
optimization, but will f£ind ‘more
optimizations.

7) Puts the compiler in 'Fastest alignment'’
mode. Data objects will be aligned for the
fastest performance on the target (unless
overridden by rep. clauses). This takes more
data space.

51) Turns check elimination optimizations off.
Useful for finding uninitialized variables.

52) Turns the basic block optlmlzer off.

53) Turns the global optlmlzer off.

54) Turns peephole optlmlzatlons off.

55) Puts the optimizer in 'Time’ optlmization
mode,

56) Puts the opulmlzer in 'Quick! optlmlzatlon
mode. This is faster than 'Careful'
optimizations, and often will generate nearly
the same code.

57) Put the compiler in 'Smallest alignment'
mode. Data is only aligned when required or
when the performance penalty is severe:

Takes less data space.

Other integer Iitsrals will be ignored. 1In
general, this -rzgma should not be mixed with the

OPTIMIZE pracmz. since one has a textual arange
and the other 2c:s not; this can lead to
surprising situzt:ons. However, the OPTIMIZE

X

Copyright 1990, R.R. Software, Inc.] Revision 4.6

Appendix F: Implementation Dependencies

pragma may be used inside a compilation unit for
which pragma OPTIMIZER(On) has been listed before
the start of the compilation pnit.

SYSLIB This pragma tells the compiler that the current
unit is one of the standard Janus/Ada system
libraries. It takes as a parameter an integer
literal in the range 1'.. 15; only the values 1
through 4 are currently used. For example, system
library number 2 provides floating point support.
Do not use this pragma unless you are writing.a
package to replace one of the standard Janus/Ada
system libraries.

VERBOSE Takes On or Off as its argument, and has a textual
range. VERBOSE controls the amount of output on .an
error. If VERBOSE is on, the two lines preceding
thz error are printed, with an arrow pointing at
the error. If VERBOSE is off, only the line number
is printed.

VERBOSE (Off) :

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE (On) ¢

15: if X = 10 then
16. Z = 10;

.*ERROR* Identifier is not defined

The reason for this option is that an error
message with VERBOSE on can take a long time to be
generated, especially in a large program.
VERBOSE's initial condition can be set by the
compiler command line.

Pragma INTERFACE is supported for the language "C". Pragma
INTERFACE_NAME can be used to specify a name other than the Ada
one as the name of the C function called. INTERFACE_NAME takes
two parameters, the Ada subprogram name, and a string
representlng the C name for the function. Pragma INTERFACE_NAME
is provxded so that convienient Ada names can be used as
appropriate, including operator symbols, and so that foreign
language names which are not legal Ada identifiers can be
interfaced to. If pragma.INTERFACE is used in a program,

Copyright 1990, R.R. Software, Inc. . Revision 4.6

Appendix F: Implementation .Dependencies

Jbind must be used to link it, and it must be llnked with the
Interface run-time.

Several required Ada pragmas may have surprising effects in
Janus/Ada. The PRIORITY pragma may only take the value 0, since
that is the only value in the range System.Priority. Specifying
any OPTIMIZE pragma turns on optimization; otherwise,
optimization is only done if specified on the compiler's command
line. The SUPPRESS pragma is ignored unless it only has one
parameter. Also, the following pragmas are always ignored:
CONTROLLED, INLINE, MEMORY_SIZE, PACK, SHARED, STORAGE_UNIT, and
SYSTEM_NAME. Pragma CONTROLLED is always ignored because
Janus/Ada does no automatic garbage collection; thus, the effect
of pragma CONTROLLED already applies to all access types. Pragma
SHARED is similarly ignored: Janus/Ada's non-preemptive task
scheduling gives the appropriate effect to all variables. The
pragmas INLINE, PACK, and SUPPRESS (with two parameters) all
provide recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORY_ SIZE,
STORAGE_UNIT, and SYSTEM_NAME all attempt to make changes to
constants in the System package; in. each case, Janus/Ada allows
only one value, so that the pragma is ignored.

¥.2 Implementation Dependent Attributes

Janus/Ada does not provide any attrlbutes other than the required
Ada attributes.

r.3 spocification of the Package SYSTEM
The package System'for Janus/Ada has the following definition.
package Systenm is

== System package for Janus/Ada

-= Types to define type Address.
type Offset_Type is new Long_Integer:;
type Word is range 0 .. 65536;
for Word'Size use 16;
type Address is record
Offset : Offset_Type;
Segment .: Word;
end record;
Function "+" (Left : Addresss; Right : Offset_Type) Return
Address;
Function "+" (Left : Offse:r_Type:; Right : Address) Return
Address;
Functionm "-" (Left : Addr=ss; Right : Offset_Type) Return

. -
.

Copyright 1990, R.R. Software, Iinc. Revision 4.6

Appendix. F: Implementation Dependencies

Address:;
Punction "-" (Left, Right : Address) Return Offset_Type;

type Name is (UNIX):;
System_Name : constant Name := UNIX;

Storage_Unit : constant := 8;
Memory_Size : constant := 65536;
== Note: The actual memory size of a program is
-= determined dynamically; this is the maximum number
== of bytes in the data segment.

== System Dependent Named Numbers:
Min_Int : constant := -2_147_483_648;
Max_Int : constant := 2_147_483_647;
Max_Digits : constant := 15;
Max_Mantissa : constant := 31;
Fine_Delta : constant := 2§1.0#E-31;
-= equivalently, 4.656612873077392578125E~10
Tick : constant := 0.01; =~ Some machines have less
== accuracy; for example, the IBM PC actually ticks
== about every 0.06 seconds.

== Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit
machine byte. The type Word is a 16-bit Unsigned Integer type,
corresponding to a machine word.

F.4 Restrictions on Representation Clausas

A length clause that specifies T'SIZE has the followxng
restr1ct10n5°

If T is a discrete type, or a fixed point type, then the
size expression can given any value between 1 and 32 bits
(subject, of course, to allowing enough bits for every
possible value). Signed and unsigned representations are
supported.

r-8
Copyright 1990, R.R. Software, Inc. Revision 4.6.

Appendix F: Implementation Dependencies

If T is a floating point type, sizes of 32 and 64 bits are
supported (corresponding to Float and Long_Float
respectively). .

If T is an array or record type, the expression must give
enough room to represent all of the components of the type
in their object representation. This can be smaller than
the default size of the type.

If T is an access type or task type, the expression must
give the default size for T.

A length clause that specifies T'STORAGE_SIZE for an access type
is supported.

Any integer value can be specified. STORAGE_ERROR will be raised
if the value is larger than available memory; no. space will be
allocated if the value is less than or equal to zero.’

A length clause that specifies T'STORAGE_SIZE for a task type T
is supported. Any integer value can be specified. Values
smaller than 256 will be rounded up to 256 (the minimum

. T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A 1ength clause that specifies T'SMALL for a fixed poxnt type
must give a value (subject to the Ada restrictions) in the range

2.0 ** (-99) ,, 2.0 * 99,
inclusive.

An enumeration representation-clause for a type T may give any-
1nteger values within the range Systen. Min_Int .. System.Max_Int.
If a size length clause is not given for the type, -the type's
size is determined from the literals glven. (If all of the
literals fit in a byte, then Byte'Size is used; similarly for
Integer and Long_Integer).

The expression in an alignment clause in a record representation
clause must equal 1 or 2 (to specify Byte or Word alignment
respectlvely) The alignment value is respected for all object
Creations unless another representation clause exp11c1tly
overrides it. (By placing a component at a non-aligned address,
for example).

A component clause may give any desired storage location. The
size of the recdérd is adjustsd upward if no representation clausv

Copyright 1990, R.R. Software, Inc. . Revision 4.6

Appendix F: lmplementation Dependencies

has been given, and more space is needed for the specified
storage location to be obeyed.

The range for specifying the bits may specify any values within
the following limitations (assuming enough bits are allowed for
any value of the subtype):

If the component type is a discrete or fixed point type, any
value may be specified for the lower bound. The upper bound

must satisfy the equation

UB - (LB - (LB Mod System.STORAGE_UNIT_SIZE)) <= 32.

If the component type is any other type, the lower bound
must satisfy

LB Mod System.STORAGE_UNIT_ SIZE = O.

The upper bound must be
UB := LB + T'Size - 1;

Janus/Ada supports address clauses on most objects. Address
clauses are not allowed on parameters, generic formal parameters,
and renamed objects. The address given for an object address
clause may be any legal value of type System.Address. It will be
interpreted as an absolute machine address, using the segment
part as a selector if in the protected mode. It is the user's
responsibility to ensure that the value given makes sense (i.e.,
points at memory, does not overlay other objects, etc.) No other
address. clauses are supported.

r.5 Ilplelentition Defined Names

Janus/Ada uses no implementation generated names.

FP.6 Address Clause Expressions

The address given for an object address clause may be any legal
value of type System.Address. It will be interpreted as an
absolute machine address, u51ng the segment part as a selector if
in the protected mode. It is the user's responsibility to ensure

that the value given makes sense (i.e., points at memory, does
not overlay other objects, etc.)

F.7 Unchecked Conversion Rest-ictions

We first make the following 3zZinitions:

=10
Copyright 1990, R.R. Software, Inc. . “ Revision 4.6

Appendix F: Iwmplementation Dependencies
A type or subtype is said to be a gimple tvpe or a simple subtype

(respectively) if it is a scalar (sub)type, an access (sub)type,
a task (sub)type, or if it satisfies the following two
conditions:

1) If it is an array type or subtype, then’it is
constrained and its index constraint is static; and

2) If it is a composite type or subtype, then all of its
subcomponents have a simple subtype.

A (sub)type which does not ‘meet these conditions is called non-
simple. Discriminated records can be simple; variant records can
be simple. However, constraints which depend on discriminants
are non-simple (because they are non-static).

Janus/Ada imposes the following restriction on instantiations of
. Unchecked_Conversion: for such an instantiation to be legal, both
the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

¥.8 Implementation Dependencies of I/0

The syntax of an external file name depends on the operating
system being used. Some external files do not really specify disk
files; these are called devices. Devices are specified by special
file names, and are treated specially by some of the I/0
routines.

The syntax of an UNIX -filename is:
[path]fiiename

where "path" is an optional path consisting of directory
names, each followed by a foreslash; "filename" is the
filename (maximum 14 characters). See your UNIX manual for a
complete description. In addition, the following special
device names are recognized:

/dev/sti UNIX standard input. The same as
Standard_Input. Input is buffered by lines,
and all UNIX line editing characters may be
used. Can only be read.

/dev/sto UNIX standard output. The same as
Standard_Output. Can only be written.

/dev/err UNIX standard error. The output to this
device cannot be redirected. Can only be
written.

/dev/ekbd = The current terminal input device. Single

character input with echoing. Due to the

F-11
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

design of UNIX, this device can be
redirected. Can be read and written.
/dev/kbd The current terminal input device. No
character interpretation is performed, and
there is no character echo. Again, 'the input
to this device can be redirected; so it does
not always refer to the physical keyboard.

The UNIX device files may also be used.

The UNIX I/O system will do a search of the default search
path (set by the environment PATH variable) if the following
conditions are met:

1) No path is present in the file name; and
2) The name is not that of a device.

Alternatively, you may think of the search being done if ‘the
file name does not contain any of the characters ':!' or '/'.

The default search path cannot be changed while the program
is running, as the path is copied by the Janus/Ada program
when it starts running.

Note:
Creates will never cause a path search as they must work in
the current directory.

Upon normal completion of a program, any open external files are
closed. Nevertheless, to provide portability, we recommend
explicitly closing any files that are used.

Sharing external files between multiple file objects causes the
corresponding external file to be opened multiple times by "the
operating system. The effects of this are defined by-your
operating system. This external file sharing is only allowed if
all internal files associated with a single external file are
opened only for readlng (mode In_File), and no internal file is
Created. Use_Error is raised if these requirements are violated.
A Reset to a wrztlng mode of a file already opened for reading
also raise Use_Error if the external file also is shared by
another internal file.

Binary I/0 of values of access types will give meaningless
results and should not be donse. Blnary I/0 of types which are
not simple types (see definition in Section F.7, above) will
raise Use Error when the file is opened Such types require

212
Copyright 1990, R.R. Software, Inc. . Revision 4.6

Appendix F: Implementation Dependencies

specification of the block size in the form, a capability which
.is not yet supported.

The .-form parameter for Sequential_ I0 and Direct_I0 is always
expected to be the null string.

The type Count in the generic package Direct_IO is defined to
have the range 0 .. 2_147_483_647.

Ada specifies the existence of special markers called teiminators
in a text file. Janus/Ada defines the line terminator to be <LF>
(line feed), with or without an additional <CR> (carriage
return) The page terminator is the <FF> (form feed) character;
if it is not preceded by a <LF>, a line terminator is also

assumed.

The file terminator is the end-of-file returned by the host
operating system. If no line and/or page terminator directly
precedes the file terminator, they are assumed. The only legal
form for text files is "" (the null strzng) All other forms
raise USE_ERROR.

Output of control characters does not affect the layout that
Text_IO generates. In particular, output of a <LF> before a
New_Page does not suppress the New_Line caused by the New_Page.

The character <LF> is written to represent the line terminator.

The type Text_IO.Count has the range 0 .. 32767; the type
Text_I0.Field also has the range 0 .. 32767.

I0_Exceptions.USE_ERROR is raised if something cannot be done
because of the external file system; such situations arise when
one attempts:

- to create or open an external file for writing when the

external file is already open (via a different internal
file).
- to create or open an external file when the external

file is already open for writing (via a different
internal flle)

- to reset a file to a writing mode when the external
file is already open (via a different internal file).

- to write to a full device (Write, Close);

- to create a file in a full directory (Create):;

- to have more files open than the 0S allows (Open,
Create);

- to open a device with an illegal mede;

- to create, reset, or delete a gev1ce,

F-13
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

- to create a file where a protected file (i.e., a
directory or read-only file) already exlsts,

- to delete a protected file;

- to use an illegal form (Open, Create); or

- to open a file for a non-simple type wzthout specifying
the block size;

- to open a device .for direct I/0.

I0_Exceptions.DEVICE_ERROR is raised if a hardware error other
than those covered by USE_ERROR occurs. These situations should
never occur, but may on rare occasions. For example, DEVICE_ERROR
is raised when:

- a file is not found in a Close or a Delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on a sequential End_Of_File.

The subtypes Standard.Positive and Standard.Natural, used by some
I/0 routines, have the maximum value 32767,

No package Low_Level IO is provided.

¥.9 Running the compiler and lipker

The Janus/Ada compiler is invoked using the following format:
janus filename {-option)

wvhere filename is an UNIX file name (including path) with
optional compiler options (-option).

The compiler options are:

B Brief error messages. The line in error is not printed

(equivalent to turning off pragma VERBOSE).
BS Brief statistics. Few compiler statistics are printed.
D Don't generate debugging code (equivalent to turning

off pragma DEBUG)

F- Use in-line 80387 instructions for Floating point
operations. By default the compiler generates library
calls for flocating point operations. The 80387 may be

" used to execute the library calls. A floating point
support library is still required, evan though this -
option is used.

-6
Copyright 1990, R.R. Software, Inc. . Revision 4.6

Oox

Rpath

Spath

Wx

Appendix F: ‘Implementation Dependencies

Create a listing file with name filename.PRN on the
same disk as filename. The listing file will be a
listing of only the last compilation unit in a file.

Object code memory model. X is 0 for the 80386 system.
other memory models are not supported. (Since this °
model 'limits' a program to 4 Gigabytes of Code and 4
Gigabytes of Data, this is not a concern). Memory
model 0 is assumed if this option is not given.

Quiet error messages. This option causes the compiler
not to wait for the user to interact after an error. In
the usual mode, the compiler will prompt the user after
each error to ask if the compilation should be aborted.
This option is useful if the user wants to take a
coffee bredak while the compiler is working, since all
user prompts are suppressed. The errors (if any) w111
not stay on the screen when this option is used;
therefore, the console traffic should be sent to the
printer or to a file. Be warned that certain syntax
errors can cause the compiler to print many error
messages for each and every line in the program.

Route the SYM, SRL, and JRL files produced by the
compiler to the specified path 'path'. The default is
the same path as filename.

Route Scratch files to specified path.

Generate information which allows trimming unused
subprograms from the code. This option tells the
compiler to generate information which can be used by
the remove subprograms from the final code. This
option increases the size of the .JRL files produced.
We recommend that it be used on reusable libraries of
code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some
subprograms are not called.

Don't print any warning messages. For more control of
warning messages, usé the following option form (Wx).

Print only warnings of level less than the specified
digit 'x'. The given value of x may be from 1 to 9. The
more warnings you are willing to see, the higher the
number you should give.

Handle eXtra symbol table information. This is for the
use of debuggers and other future tools. This option

F-15
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

requires large quantitiesrof‘mémory and disk space, and
thus should be avoided if possible. .

Z Turn on optimization. This has the same effect as if
the pragma OPTIMIZE were set to SPACE throughout your
compilation.

The default values for the command line options are:

B Error messages are verbose.

BS Statistics are verbose.

Debug code is generated.

Library calls are generated for floating point operations.
No listing file is generated.

Memory model 0 is used.

The compiler prompts for abort after every errcr.

No trimming code is produced.

All warnings are printed.

Extra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

NXESOOHTU

Leading spaces are disregarded between the filename and the call
to JANUS. Spaces are otherwise not recommended on the command
line. The presence of blanks to separate the options will be
ignored.

Examples:
janus test-Q-L
janus test.run-w4
janus test
janus test .run =B =W-L

The compiler produces a SYM (SYMbol table informatlon) ‘file whehn
a specification is compiled, and a SRL or JRL (Speclflcatlon
Relocatable or Janus Relocatable) file when a body is compiled.
To make an executable program, the approprlate SRL and JRL files
must be lipked (combined) with the run~time libraries. This is
accomplished by running the Janus/Ada binder, JBIND.

The Janus/Ada binder is invoked using the following format:
jbind filename {-option)

Here "filename" is the name of the SRL or JRL file created when

the main program was compiled (without the .SRL or .JRL

extension) with optional linker options (-option). The filename

usually corresponds to the first ten letters of the name of your
main program. 3ee the llnker/blnder manual for more detailed

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation. Dependencies

directions. We summarize here, however, a few of the most
commonly used linking options: :

FO Use software floating point (the default).

F2 Use hardware (80387) floating point.

L Display lots of information about the loading process.

00 Use memory model 0 (the default); see the description of the'
/0 option in the compiler, above.

Q Use quiet error messages; i.e., don't wait for the user to
interact after an error.

B Use brief statistics. i

T Trim unused subprograms from the code. 'This option tells
the linker to remove subprograms which are never called from
the final output file. This option reduces space usage of
the final file by as much as 30K.

Examples:
jbind test
jbind test -Q-L
jbind test-L~F2

Note that if you do not have a hardware floating point chip, then
you generally will not need to use any binder options.

The output of Jbind is a standard UNIX .o file. This file must
be linked with the standard UNIX libraries using ld; see your
UNIX manual for details.

F-17
Copyright 1990, R.R. Software, Inc. Revision 4.6

